Skip to main content
Banner [Small]

Test out our new Bento Search

test area
x
# results
shortcut
Sections
HTML elements
Section Tiles
expand
Tile Cover
Mouse
Math Lab
Space
Tile Short Summary
Math Lab Rooms located in the Main Library in rooms 300X and 300Y
expand
Tile Cover
coffee
CC's Coffee House
Space
Tile Short Summary
Located at the first floor of the LSU Main Library.
expand
Tile Cover
People troubleshooting on a computer
Ask Us
Service
Tile Short Summary
Check our FAQs, submit a question using our form, or launch the chat widget to find help.

Website

207

Gear

44

FAQ

169

Database Listing

375

Archive Records

41199

Staff

101

Discovery

2064911
The environmental trade-off of fertiliser, residue and catch crop management in Danish cropping systems
Context Nitrogen is an essential macronutrient in agriculture, affecting both crop yields and soil health. In Denmark, one of the most densely farmed regions in the world, excess reactive nitrogen (Nr) compounds are lost to the environment along gaseous and hydrological pathways in forms such as nitrate, ammonia, nitrogen oxides and dinitrogen.Objectives Here, we aim to assess the effect of different field management practices (fertilisation, crop residue management or cultivation of catch crops) on environmental Nr losses and the field scale soil net GHG balance (i.e., sum of soil C stock changes and direct and indirect N2O emissions).Methods For this purpose, highly detailed data from the Danish Agricultural Watershed Monitoring Program (LOOP-program; 2013–2019) were used in combination with the process-based model LandscapeDNDC.Results and conclusions The results indicate that a mixture of organic and synthetic fertilisers turns soils to a stronger net sink of GHGs (∼70 – ∼514 kgCO2−eq ha−1 yr−1) compared to exclusive use of only one type of fertiliser. In addition, incorporating crop residue and cultivation of catch crops increases the nitrogen use efficiency (NUE) by 3–11 % on average and decreases environmental Nr losses.Significance These findings emphasize the potential of targeted fertiliser, residue and catch crop management to increase the sustainability of crop production systems in Denmark.