Skip to main content
Banner [Small]

Test out our new Bento Search

test area
x
# results
shortcut
Sections
HTML elements
Section Tiles
expand
Tile Cover
Mouse
Math Lab
Space
Tile Short Summary
Math Lab Rooms located in the Main Library in rooms 300X and 300Y
expand
Tile Cover
coffee
CC's Coffee House
Space
Tile Short Summary
Located at the first floor of the LSU Main Library.
expand
Tile Cover
People troubleshooting on a computer
Ask Us
Service
Tile Short Summary
Check our FAQs, submit a question using our form, or launch the chat widget to find help.

Website

207

Gear

44

FAQ

169

Database Listing

375

Archive Records

41199

Staff

101

Discovery

1835291
Trade-offs between bycatch and target catches in static versus dynamic fishery closures
While there have been recent improvements in reducing bycatch in many fisheries, bycatch remains a threat for numerous species around the globe. Static spatial and temporal closures are used in many places as a tool to reduce bycatch. However, their effectiveness in achieving this goal is uncertain, particularly for highly mobile species.We evaluated evidence for the effects of temporal, static, and dynamic area closures on the bycatch and target catch of 15 fisheries around the world. Assuming perfect knowledge of where the catch and bycatch occurs and a closure of 30% of the fishing area, we found that dynamic area closures could reduce bycatch by an average of 57% without sacrificing catch of target species, compared to 16% reductions in bycatch achievable by static closures. The degree of bycatch reduction achievable for a certain quantity of target catch was related to the correlation in space and time between target and bycatch species. If the correlation was high, it was harder to find an area to reduce bycatch without sacrificing catch of target species. If the goal of spatial closures is to reduce bycatch, our results suggest that dynamic management provides substantially better outcomes than classic static marine area closures. The use of dynamic ocean management might be difficult to implement and enforce in many regions. Nevertheless, dynamic approaches will be increasingly valuable as climate change drives species and fisheries into new habitats or extended ranges, altering species-fishery interactions and underscoring the need for more responsive and flexible regulatory mechanisms.
Is sorghum a promising summer catch crop for reducing nitrate accumulation and enhancing eggplant yield in intensive greenhouse vegetable systems?
Purpose: Summer catch crop (CC) has been introduced into the vegetable rotating system in greenhouse fields to reduce nitrogen (N) losses through crop uptake and residual N immobilization. However, the effects of planting sorghum with high N uptake and biomass, and biological nitrification inhibition (BNI) potential as a CC on soil N dynamics and subsequent crop yield remain unclear. Methods: In the two-year field experiment, the comprehensive effects of planting sorghum as CC on subsequent eggplant yield, soil mineral N dynamics, ammonia-oxidizing archaea (AOA) and bacteria (AOB) amoA gene abundances were determined, in comparison to the sweet corn and fallow treatments. Results: Compared to the fallow and sweet corn, planting sorghum as CC increased subsequent eggplant yield by 24.88% and 18.94% in the 2014–2015 and 2015–2016 over-winter growing season, respectively. CC planting reduced soil nitrate (NO3−-N) accumulation during the summer fallow season. Sorghum planting could significantly maintain higher level of ammonium (NH4+-N) concentration during the summer fallow season and the first month of succeeding over-winter season. In addition, sorghum planting reduced soil net nitrifying potential, which could be partially attributed to the decreased amoA gene abundance of AOA at the 0–30 and 30–60 cm soil layers and AOB at 0–30 cm soil layer. Conclusion: We conclude that planting sorghum in the summer fallow season is a promising strategy to retain soil NH4+-N, reduce soil NO3−-N accumulation, and enhance subsequent eggplant yield. [ABSTRACT FROM AUTHOR]